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[soscalar Giant Monopole
Resonance

* Giant resonances — collective excitation of nucleus due to
near-exhaustion of Energy-Weighted Sum Rule

* ISGMR is a “breathing mode,” a rapid expansion and shrinking
of the nucleus
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Compressibility of
Nuclear Matter

* The compressibility of nuclear matter can be calculated from
the energy of the giant monopole resonance

m<rz>

— 2
KA_E * h2

This constant is important for the nuclear equation of state

Speed of sound in nuclear matter = 0.15 ¢




Typical Method

* Collide a beam of alpha particles with a target to excite it into
ISGMR

* Measure energy and angular distribution of outgoing alpha
particles

* The angular distribution tells us which are from the ISGMR,
and the energy of those alpha’s gives the energy of the ISGMR




Unstable Nuclei

The problem: a target can not be made of unstable nuclei

The solution: switch the role of beam and target

However, alpha particles are helium, which is a gas at room
temperature

Instead, the target will be made of °Li, a solid

Experiments with ISGMR using °Li give similar results to those
involving alpha particles




Experimental Setup
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My Role

Determine the relative gain of the individual strips in the
scintillator detector

Account for attenuation in the scintillator strips

Design a Faraday cup to catch the beam after exiting the MDM
spectrometer but before entering the wire detector

If the beam was not stopped, it would damage the detector




Scintillator Detector

* Used to determine energy and scattering angle of small decay
particles like alphas and protons

* Consists of 13 vertical strips directly in front of 12 horizontal strips

* Five vertically-oriented blocks catch all particles that pass through
the first two layers

* Examining the vertical and horizontal layers in coincidence map out
152 “pixels” which give the scattering angle

* The beam and residual decay particles pass through an openingin
the center of the detector




Schematic diagram of
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One concern is
attenuation




Test runs

* Test runs were performed using both protons scattering off of
a 1°C target and a beta source
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* The beta tests were ultimately disregarded for analysis due to
proximity to threshold




Analysis

* The data were analyzed
on a pixel-by-pixel basis

* The elastic peak was
isolated and its mean
value was determined
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Dealing with attenuation

* Examination of vertical strips seemed to indicate that
attenuation could be explained as an exponential with an
offset
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* However, examination of horizontal strips proved that the
situation was more complex
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Angular effects
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Energy and scattering angle

* The kinetic energy of the particles is greater near the center
(h9, in this instance)

* The particles deposit more energy at extreme angles
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Symmetric points

Mean values of the elastic peak
* By finding the ratio of of h2
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Determining relative gain

By comparing pixels with
equal scattering angles,
the relative gain could be
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Principles of a Faraday cup

* A beam of ions impinges upon a metal surface

* The charge hits the surface and flows to ground, resulting in a
measurable current
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My Design

Designed using AutoCAD
2002

Used SRIM (Stopping
Range of lons in Matter)
program

One thin layer of
aluminum to stop the
beam

A much thicker layer of
tantalum to stop alpha
particles produced by the
beam




Entire assembly

F=2/8* for inner O-FEing groove
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List of dmenslons that were not Usted on the plans [ used

-flange thickhness
-glze of lmterlor port of box

List of elements thot con be choanged to whotever proves convenlent
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Additional specifications

The mounting of the cup will be made of plastic to electrically
isolate it

Electrical connection will be made using a brush sliding over a
PC-board

The screw will be powered with a motor positioned outside of
the box

A position sensor will be used inside the box




The Next Step

* The Faraday cup must be constructed

* The cyclotron must be conditioned for the higher energies
that will be used in this experiment

* The experimental phase should begin next Fall, with a beam of
stable 23Si, to assure that the experiment is providing the
expected results

* Finally, the experiment can be performed on unstable nuclei




Acknowledgements

Dr. Youngblood, my mentor, for sharing his years of experience
and providing invaluable guidance

Jonathan Button and Dr. Lui, for their support and patience

Sherry Yennello, Lauren Heilborn, and Leslie Speikes for
coordinating the REU program

The National Science Foundation and the Department of Energy
for providing the funds to make this experience possible

My fellow REU students for providing an excellent environment
in and out of work




